06 - Mengen, Aussagen & Beweise Vorkurs Mathematik SoSe 2022

Lukas Mürmann

Fakultät Informatik - Lehrstuhl 7 - TU Dortmund

15.03.2022

Mengen, Aussagen & Beweise

Aussagen, Mengen und Beweistechniken

- Aussagen und Logik Motivation
- Was sind Aussagen?
- Logische Verknüpfungen
- Prädikatenlogik
- Mengen
- Die Idee hinter Beweisen
- Beweistechniken Motivation
- Beweisformen

Aussagen und Logik – Motivation

Wozu betrachten wir Aussagen und Logik?

- Wir betrachten Probleme und versuchen Lösungen zu finden
- Ein Problem zu formulieren hilft es zu lösen
- Mathematik formalisiert Probleme als Aussagen
- Aussagen können bewiesen oder widerlegt werden
- Man muss logisch argumentieren können

Motivation Was sind Aussagen Logische Verknüpfungen Prädikatenlogik

Aussagen und Logik – Motivation

Mathematik als Sprache

Mathematik hat...

Vokabeln: Notation $(+, \mathbb{N}, \forall)$

Grammatik: Rechenregeln und Konventionen (Klammerung,

"Punkt vor Strich")

...und im Gegensatz zum Deutschunterricht gibt es keinen

Spielraum für Interpretationen.

Aussagen und Logik – Motivation

Beispiel

```
"Alle geraden n" \iff \{n \in \mathbb{Z} \mid n \text{ ist gerade}\}

\iff \{n \in \mathbb{Z} \mid n \text{ ist ein Vielfaches von 2}\}

\iff \{n \in \mathbb{Z} \mid \text{Es gibt ein } m, \text{ so dass } n = 2m\}

\iff \{n \in \mathbb{Z} \mid \exists m \in \mathbb{Z} : n = 2m\}
```

An dieser Stelle sieht man, warum sich alle geraden Zahlen durch 2 teilen lassen.

Was sind Aussagen?

Beispiele für Aussagen

- "Unter meinem Bett befindet sich ein Krokodil."
- "Ich habe Schnupfen."
- "Borussia hat am Samstag gespielt."
- "2m ist eine gerade Zahl"
- Aber: "Diese Aussage ist falsch." ist keine Aussage.

Motivation
Was sind Aussagen
Logische Verknüpfungen
Prädikatenlogik

Wahrheitswert einer Aussage

Wahrheitswert: Aussagen können entweder wahr oder falsch sein.

Notation – wahr: Für wahr schreiben wir auch w, true, t oder 1.

Notation - falsch: Für falsch schreiben wir auch f, false oder 0.

Vorsicht: Manche Dozenten wünschen die Schreibweise 1 und 0 für den Wahrheitswert nicht! Daher lieber w und f verwenden.

```
Negation: Die Negation ¬ verneint eine Aussage.
```

Beispiel:

```
A = ,2m ist eine gerade Zahl" (w), \neg A = "2m ist keine gerade Zahl" (f).
```

Konjunktion: Um zwei Aussagen mit einem logischen "und" zu verbinden, verwenden wir die Konjunktion ∧.

Beispiel:

```
A = ...2m ist eine gerade Zahl" (w), B = ...4n ist eine gerade Zahl" (w),
```

 $A \wedge B = "2"$ ist eine gerade Zahl und 4n ist eine

gerade Zahl" (w).

Disjunktion: Ein logisches "oder" wird durch die Disjunktion ∨ ausgedrückt.

Vorsicht: Das logische "oder" ist nicht exklusiv, d.h. es können auch beide Aussagen wahr sein.

Beispiel:

A = "Ich gehe Freitag ins Kino." (w),

B = "Ich werde für Mathe lernen" (w),

 $A \lor B =$ "Ich gehe Freitag ins Kino oder ich werde

für Mathe lernen" (w).

Implikation: Wenn wir aus einer Aussage A eine Aussage B schlussfolgern schreiben wir: $A \Rightarrow B$.

Beispiel:

A = "Unter meinem Bett ist ein Krokodil." (f),

B = "Schalke ist Deutscher Meister." (f),

 $A \Rightarrow B =$ "Wenn unter meinem Bett ein Krokodil ist,

dann ist Schalke Deutscher Meister." (w)

Äquivalenz: Die Verknüpfung von den Aussagen A und B zu "genau dann A, wenn B" wird kurz $A \Leftrightarrow B$ geschrieben. In Englischer Literatur schreibt man auch iff, was die Kurzform für if and only if ist. Beispiel:

A = "Mein Computer ist nicht defekt." (w), B = "Ich spiele mit meinen Freunden." (w), $A \Leftrightarrow B =$ "Wenn mein Computer nicht defekt ist, (dann) spiele ich mit meinen Freunden." (w).

Wahrheitstafeln

Verknüpfungen von Aussagen können mit Wahrheitstafeln auf ihren Wahrheitswert überprüft werden:

A	В	$\neg A$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
W	W				
W	f				
f	w				
f	f				

Wahrheitstafeln

Verknüpfungen von Aussagen können mit Wahrheitstafeln auf ihren Wahrheitswert überprüft werden:

Α	В	$\neg A$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
W	W	f	W	W	W
W	f	f	w	f	f
f	w	w	w	W	f
f	f	W	f	W	W

Eine Aussage, die für beliebige Wahrheitswerte immer wahr ist, wird als **Tautologie** bezeichnet.

Wahrheitstafeln

Es gibt einige wichtige Eigenschaften von Aussagen, die man mit Wahrheitstafeln beweisen kann:

Α	$A \wedge f$	$A \vee f$	$A \wedge w$	$A \lor w$
W				
f				

Folgende Regeln lassen sich an der Wahrheitstafel ablesen:

$$(A \wedge f) \Leftrightarrow$$

$$(A \vee f) \Leftrightarrow$$

$$(A \wedge w) \Leftrightarrow$$

$$(A \lor w) \Leftrightarrow$$

Wahrheitstafeln

Es gibt einige wichtige Eigenschaften von Aussagen, die man mit Wahrheitstafeln beweisen kann:

Α	$A \wedge f$	$A \vee f$	$A \wedge w$	$A \lor w$
W	f	W	W	W
f	f	f	f	W

Folgende Regeln lassen sich an der Wahrheitstafel ablesen:

$$(A \wedge f) \Leftrightarrow f$$

$$(A \lor f) \Leftrightarrow A$$

$$(A \wedge w) \Leftrightarrow A$$

$$(A \lor w) \Leftrightarrow w$$

Wahrheitstafeln – Beispielaufgabe

Eine Schlussregel der Form

Aus A_1 und A_2 folgt A.

kann dadurch als gültig nachgewiesen werden, indem man zeigt, dass die Aussage $A_1 \wedge A_2 \Rightarrow A$ nur den Wahrheitswert w erhalten kann.

Wahrheitstafeln – Beispielaufgabe

Schnittregel: Aus $A \vee B$ und $\neg A$ folgt B.

Α	В	$A \vee B$	$\neg A$	$(A \lor B) \land (\neg A)$	$(A \lor B) \land (\neg A) \Rightarrow B$
W	W				
w	f				
f	W				
f	f				

Wahrheitstafeln – Beispielaufgabe

Schnittregel: Aus $A \vee B$ und $\neg A$ folgt B.

	A	В	$A \vee B$	$\neg A$	$(A \lor B) \land (\neg A)$	$(A \vee B) \wedge (\neg A) \Rightarrow B$
-	W	W	W	f	f	W
	W	f	W	f	f	W
	f	w	W	w	W	W
	f	f	f	w	f	W

Wahrheitstafeln – Beispielaufgabe

Kettenschluss: Aus $A \Rightarrow B$ und $B \Rightarrow C$ folgt $A \Rightarrow C$.

Wichtige Regeln

Seien A, B und C beliebige Aussagen, dann gilt...

Idempotenz
$$(A \land A) \Leftrightarrow A$$

 $(A \lor A) \Leftrightarrow A$

Kommutativität
$$(A \land B) \Leftrightarrow (B \land A)$$

 $(A \lor B) \Leftrightarrow (B \lor A)$

Assoziativität
$$((A \land B) \land C) \Leftrightarrow (A \land (B \land C))$$

 $((A \lor B) \lor C) \Leftrightarrow (A \lor (B \lor C))$

Wichtige Regeln

Seien A, B und C beliebige Aussagen, dann gilt...

Distributivität
$$(A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$$

 $(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C))$

De Morgan'sche Regel
$$\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$$

 $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$

De Morgan'sche Regel

Wir werden nun versuchen die De Morgan'sche Regel nachzuweisen:

A	4	В	$\neg A$	$\neg B$	$\neg (A \lor B)$	$\neg A \land \neg B$
V	/	W	f	f		
٧	V	f	f	W		
f	:	w	w	f		
f	:	f	w	W		

De Morgan'sche Regel

Wir werden nun versuchen die De Morgan'sche Regel nachzuweisen:

Α	В	$\neg A$	$\neg B$	$\neg (A \lor B)$	$\neg A \land \neg B$
W	W	f	f	f	f
W	f	f	W	f	f
f	W	w	f	f	f
f	f	w	W	w	W

Motivation Was sind Aussagen Logische Verknüpfungen Prädikatenlogik

Prädikatenlogik

Wozu mehr Logik?

- Aussagenlogik reicht nicht aus, um allgemeine Theorien uneingeschänkt darzustellen.
- Gegeben eine Aussage A(n) über alle Zahlen $n \in \mathbb{N}$.
- Wir können keine Wahrheitstafel für **alle** $n \in \mathbb{N}$ aufstellen.
- Neue Methoden erfordern neue Notation.

Prädikatenlogik

Quantoren

Allquantor Statt "für alle n" schreiben wir kurz: $\forall n$.

Existenzquantor Statt "es gibt ein n" schreiben wir kurz: $\exists n$.

Wenn es nur ein n geben soll (ein n, nicht zwei, nicht drei), für das etwas gilt, dann schreiben wir $\exists ! \ n$ oder $\exists_1 \ n$.

Wenn es kein n geben soll, für das etwas gilt, dann schreiben wir $\nexists n$.

Aussagen, Logik und Beweistechniken

- Aussagen und Logik Motivation
- Was sind Aussagen?
- Logische Verknüpfungen
- Prädikatenlogik
- Mengen
- Die Idee hinter Beweisen
- Beweistechniken Motivation
- Beweisformen

Mengen – Motivation

Definition der Menge

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

Beschreibung von Mengen

Möglichkeiten Mengen zu beschreiben

- Durch Aufzählung der Elemente:
 M = {Freitag, Samstag, Sonntag}
- Elemente durch ein Prädikat charakterisierend:

$$M = \{m \mid A(m)\}\$$

$$M = \{m \in \mathbb{Z} \mid \exists n \in \mathbb{Z} : m = 2n\}\$$

Wir schreiben $a \in M$ ("a ist Element der Menge M") oder $a \notin M$ ("a ist kein Element der Menge M").

Wir schreiben $M = \{ \} = \emptyset$ für die leere Menge (ohne Elemente).

Mengenoperationen

Mengenrelationen

Gleichheit M = N, genau dann wenn $m \in M \Leftrightarrow m \in N$ gilt.

Teilmenge $N \subseteq M$, genau dann wenn $m \in N \Rightarrow m \in M$. $N \subset M$, genau dann wenn $N \subseteq M \land N \neq M$.

Potenzmenge

Sei *M* eine Menge. Die Potenzmenge ist definiert durch:

$$\mathcal{P}(M) = \{ M^* \mid M^* \subseteq M \}$$

Potenzmenge - Beispiel

Sei $M = \{a, b, c\}$. Dann ist die Potenzmenge zu M:

$$\mathcal{P}(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Mengenoperationen

Verknüpfungen von Mengen

Vereinigung
$$A \cup B = \{m \mid m \in A \lor m \in B\}$$

Schnitt
$$A \cap B = \{m \mid m \in A \land m \in B\}$$

Differenz
$$A \setminus B = \{ m \mid m \in A \land m \notin B \}$$

Differenz
$$A \land B = (A \cup B) \setminus (A \cap B)$$

Mengengesetze

Seien A, B, C Teilmengen einer gemeinsamen Grundmenge M. Dann gilt:

Kommutativität
$$A \cap B = B \cap A$$

 $A \cup B = B \cup A$
Assoziativität $(A \cap B) \cap C = A \cap (B \cap C)$
 $(A \cup B) \cup C = A \cup (B \cup C)$
Distribitivität $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Komplement $A \cap A^C = \emptyset$
 $A \cup A^C = M$

Mengengesetze

Seien A, B, C Teilmengen einer gemeinsamen Grundmenge M. Dann gilt:

Idempotenz
$$A \cap A = A$$

 $A \cup A = A$
Doppelkomplement $A^{CC} = A$
De Morgan'sche Gesetze $(A \cap B)^C = A^C \cup B^C$
 $(A \cup B)^C = A^C \cap B^C$
Neutralität $M \cap A = A$
 $\emptyset \cup A = A$

Die Idee hinter Beweisen

Weitere Regeln für Aussagen

Anfangs benutzen alle unsere Beweise Schlussfolgerungen.

Es gibt einige Regeln, die $A \Rightarrow B$ betreffen:

					$\neg B \Rightarrow \neg A$	$\neg (A \land \neg B)$
W	w	f	f	W		
W	f	f	w	f		
f	w	w	f	W		
f	f	w	w	w f w w		

Die Idee hinter Beweisen

Weitere Regeln für Aussagen

Anfangs benutzen alle unsere Beweise Schlussfolgerungen.

Es gibt einige Regeln, die $A \Rightarrow B$ betreffen:

Α	В	$\neg A$	$\neg B$	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$	$\neg (A \land \neg B)$
W		f	f	W	W	W
W	f	f	W	f	f	f
f	w	f w	f	W	w	W
f	f	w	w	W	W	W

Damit erhalten wir (etwas später) drei äquivalente Beweistechniken.

Beweistechniken – Motivation

Wozu brauchen wir Beweise?

- Für Übungszettel und Klausuren (nicht nur in Mathematik)
- Beweise vermitteln ein tieferes Verständnis für Strukturen und Zusammenhänge (kommt noch!)
- Beweise sind der sichere Weg Neues zu entdecken und zu erforschen

Beweisformen – Direkter Beweis

Der direkte Beweis

Direkter Beweis – Starte mit A, folgere B: $A \Rightarrow B$

Beispiel

Satz Wenn m eine gerade Zahl ist, dann ist auch m^2 gerade.

Beweis
$$m$$
 gerade $\Rightarrow 2n = m$ für ein $n \in \mathbb{N}$
 $\Rightarrow m^2 = 4n^2 = 2(2n^2)$
 $\Rightarrow m^2$ gerade

Beweisformen – Kontraposition

Beweis der Kontraposition

Beweis der Kontraposition – Starte mit $\neg B$, folgere $\neg A$: $\neg B \Rightarrow \neg A$

Beispiel

Satz m^2 gerade $\Rightarrow m$ gerade für alle $m \in \mathbb{N}$

Beweis Sei m beliebig aber ungerade, also m=2n+1 für ein $n \in \mathbb{N}$. Dann gilt auch:

$$m^2 = (2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$$

 $\Rightarrow m^2$ ist auch ungerade.

Beweisformen – Widerspruch

Beweis durch Widerspruch

Beweis durch Widerspruch – Nehme an, dass A und $\neg B$ gilt und führe zum Widerspruch: $\neg (A \land \neg B)$

Beispiel

Satz Für jede rationale Zahl $\frac{p}{q}$, p und $q \in \mathbb{N}$, $q \neq 0$, gilt $(\frac{p}{q})^2 \neq 2$. $(\sqrt{2}$ lässt sich nicht als Bruch darstellen.)

Aussagen A= , $\frac{p}{q}$ ist eine rationale Zahl, p und $q\in\mathbb{N}$, $q\neq0$ " B= , $(\frac{p}{q})^2\neq2$ "

Annahme $p, q \in \mathbb{N}$, $q \neq 0 \Rightarrow \frac{p^2}{q^2} = 2$

Beweisformen – Widerspruch

Beispiel |

Satz Für jede rationale Zahl $\frac{p}{q}$, p und $q \in \mathbb{N}$, gilt $(\frac{p}{q})^2 \neq 2$ Annahme $p,q \in \mathbb{N}$, $q \neq 0 \Rightarrow \frac{p^2}{q^2} = 2$ Beweis Durch Kürzen finden wir $c,d,d \neq 0 \in \mathbb{N}$ teilerfremd, mit $\frac{c}{d} = \frac{p}{d}$

$$\Rightarrow (\frac{p}{q})^2 = (\frac{c}{d})^2 = 2$$

$$\Rightarrow c^2 = 2d^2 \Rightarrow c^2$$
 ist gerade $\Rightarrow c$ ist gerade

$$\Rightarrow c = 2n, n \in \mathbb{N} \Rightarrow 4n^2 = 2d^2$$

$$\Rightarrow 2n^2 = d^2 \Rightarrow d^2$$
 auch gerade $\Rightarrow d$ gerade

$$\Rightarrow$$
 c. d **nicht** teilerfremd

Beweisformen – Vollständige Induktion

Beweis durch (vollständige) Induktion

Sei A(n) eine Aussage über die Zahl $n \in \mathbb{N}$ – zu zeigen: A(n) ist wahr für alle n.

Vorgehen

- IA Induktionsanfang: A(0) ist wahr.
- IV Induktionsvoraussetzung: Sei A(n) wahr für die ersten n Zahlen bewiesen.
- IS Induktionsschritt / Induktionsschluss: $A(n) \rightarrow A(n+1)$.

Beweisformen – Vollständige Induktion

Beispiel

Satz
$$A(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}$$

IA
$$A(1) = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2}$$

IV Es gelte A(n) für die ersten n Zahlen, also

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

IS Überprüfe A(n+1):

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) \stackrel{IV}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)+2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$

Idee hinter Beweisen Beweistechniken - Motivation Beweisformen

Beispiele und Gegenbeispiele

Wichtiges zu Beispielen

- Wichtig! Beispiele beweisen nichts.
- Ein Gegenbeispiel ist kein Beweis.
- Mit einem Gegenbeispiel wird eine Aussage nur widerlegt.